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We study phase separation dynamics in a driven diffusive system. Our simula- 
tions are based on the Cahn-Hilliard equation with an additional flux term due 
to an external field. We study the dynamical scaling parallel and perpendicular 
to the field, A crossover is observed from isotropic domains at early times to 
extremely anisotropic domains at later times. We find that the inverse interracial 
density (an isotropic measure of the domain size) increases as t ~, with c~ = 1/3, 
from early times independent of the field strength, even though we do not 
observe dynamical scaling during these times. Our results indicate that a growth 
exponent ~ = 1/3 may be more universal than previously expected. We analyze 
the dynamics in terms of surface driven instabilities and one-dimensional 
solitary waves. 

KEY WORDS: Nonequilibrium steady state; driven diffusive systems; phase 
ordering dynamics; interfacial instabilities. 

1. I N T R O D U C T I O N  

Driven diffusive systems are useful paradigms in understanding many 
aspects of nonequilibrium physics. (1) Examples include fast ionic conduc- 
tors (2) and phase transitions in the presence of a gravitational, magnetic, or 
electric field. The simplest model of a driven diffusive system is a lattice gas 
in the presence of an external field which enchances the transition rates 
along the field direction. For  periodic boundary conditions, the system 
evolves to a constant-current steady stateJ 3) For  attractive interparticle 
interactions, there is a sharp transition with decreasing temperature from a 
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single-phase regime to one of two-phase coexistence. In the latter regime, 
low- and high-density domains are separated by an interface whose orien- 
tation is determined by the direction of the field and the boundary condi- 
tions. This nonequilibrium phase transition has been studied both by com- 
puter simulations (3'4) and analytical methods. (s 8) More recently, driven 
diffusive systems have also become useful tools in the study of non- 
equilibrium dynamics of interfaces, such as the generation and growth of 
structures in the presence of an external field. (9'1~ Various types of 
instabilities have been proposed to understand the morphologies obtained 
in different cases. (11-14) These studies have been helpful in developing an 
understanding of the dynamics of systems far from equilibrium. 

There has also been interest in the means by which a system 
approaches two-phase equilibrium after a rapid quench from the single- 
phase regime (see refs. 15 for reviews). For zero field, the phase separation 
dynamics displays dynamical scaling and a large degree of universality. The 
scaling behavior, which depends on the universality class of the dynamics, 
can be specified by a few dynamical exponents and by the scaling form of 
the scattering intensity. The case relevant to this paper is phase separation 
dynamics for a conserved order parameter without hydrodynamics. In this 
case, for zero field, the characteristic domain size grows as t 1/3, where t is 
the time after the quench. However, it is not known how the field affects 
the universality class of the phase separation process. 

In this paper we combine these ideas and methodologies to study the 
behavior of driven diffusive systems (DDS) after a rapid quench into the 
two-phase regime. We perform two-dimensional numerical simulations to 
investigate the effect of a field-induced anisotropy on growth and dynami- 
cal scaling. Our studies are motivated from a practical point of view. For 
example, a gravitational field is present in most experiments, and although 
this effect is important at late times, there has been little theoretical 
analysis/16) Furthermore, for the single-phase regime, it has been shown 
that anisotropy is a singular perturbation, changing the character of the 
correlation function from exponential decay to power-law decay at long 
distances/17) It is, therefore, important both for experimental and more 
general reasons to determine which features of the nonequilibrium growth 
process are changed and unchanged by the anisotropy. 

We find that immediately after the quench, the structure of the 
domains is very similar to that of the domains for zero field. However, the 
field breaks the symmetry in the different directions and, at later times, 
there is a crossover to strongly anisotropic domains. Satisfactory dynamical 
scaling is difficult to obtain, and we suggest reasons why this might be so. 
Nevertheless, we are able to conclude that the growth exponents in the two 
directions are different. More unexpectedly and more interestingly, the 
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inverse interfacial density, which is an isotropic measure of growth, seems 
to obey an extremely good power law and the growth exponent is 1/3 inde- 
pendent of the field strength. This isotropic length scale grows as a power 
law even in the temporal crossover regime from isotropic to very 
anisotropic domains. This result implies that a growth exponent of 1/3 may 
be a general consequence of the conservation law. 

In the strong-field or long-time regime, the domains have a roughly 
triangular shape. The shapes of the domains can be understood in terms of 
a recently discovered surface driven interfacial instability. (14) The instability 
is not of the more familiar Mullin-Sekerka type, but is a localized 
instability due to fluxes along the interface. The surface driven instability 
depends on the orientation of the interface with respect to the field and 
helps explain why the final steady state consists of stripes parallel to the 
field. Triangular structures have also been observed in Monte Carlo 
simulations of driven diffusive systems. (13) 

We also observe "bridge"-like structures connecting two domains of 
the same phase. The "bridge" acts like a solitary wave in that the structure 
moves with respect to the rest of the system at nearly constant velocity and 
maintains its size and shape for long periods of time. The "bridges" can be 
understood in terms of the dynamics of the one-dimensional driven dif- 
fusive system. 

The remainder of the paper is organized as follows. In Section 2 we 
introduce the coarse-grained description of driven diffusive systems and the 
corresponding generalization of the Cahn-Hilliard equation. In Section 3 
we report our numerical simulations of the phase separation dynamics. We 
describe the domain structure, the dynamical scaling behavior, and growth 
exponents in each direction. We study the dependence of dynamical scaling 
on the magnitude of the field and discuss the universality of the growth 
exponent for the isotropic length scale. In Section 4 we use an analysis of 
the stability of the interfaces to understand some of the structures found in 
the simulation. Section 5 is a summary. 

2. THE C A H N - H I L L I A R D  EQUATION FOR 
DRIVEN D IFFUSIVE S Y S T E M S  

The standard Cahn-Hilliard equation is a partial differential equation 
describing the dynamics of a system with a conserved order parameter. (ls~ 
In this section, we show how the equation must be modified in the presence 
of a field. 

Assume a field of strength E in the x direction. Let ~(r, t) be the local 
coarse-grained order parameter at point r and time t. For the lattice gas 
model ~ would be a coarse-grained local density. The evolution equation 
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for ~ is obtained by considering a closed system for which an equilibrium 
free energy exists. For periodic or open boundary conditions there is no 
such free energy. However, it is assumed that locally the dynamics is the 
same as that for the closed system. In the presence of a field the coarse.- 
grained free energy is 

F{0} = F 0 { ~ } - E f  drx0(r ,  t) (2.1) 

where F0 is the coarse-grained free energy for zero field. However, the 
standard procedure for obtaining the Cahn-Hilliard equation for 0 results 
in E dropping out of the equation. (19) In other words, the field only affects 
the dynamics by modifying the boundary conditions. This is unphysical, as 
it implies that the effects of the field can be postponed for an arbitrary 
period of time by making the system arbitrarily large. However, in general 
the mobility depends on the local order parameter. (19~ When this is 
included, the Cahn-Hilliard equation becomes 

~--~-~ = V. (M(0) V#) - E 0M(0) 0~b (2.2) 
~t 00 3x 

where the zero-field chemical potential/, = 6Fo{0}/6 ~. We do not consider 
additional terms due to thermal fluctuations, since empirically it has been 
found that growth and scaling are not greatly affected by these thermal 
fluctuations. (20, 22) 

In general, Fo is a complicated function of ~. However, the scaling 
behavior does not depend on the exact form of F 0 as long as it has the 
correct overall features such as symmetry and types of extrema32~ For 
Ising-like symmetry, we require a symmetric double-well potential. We 
choose the standard 04 potential. The exact form of the mobility should 
also be unimportant. The simplest nontrivial form maintaining q,--+ - 0  
symmetry is M =  (1 - a02)/2, where a is a parameter which depends on the 
temperature. Finally, we assume that the order-parameter-dependent 
mobility is only important in the coupling to the field. 

With these assumptions, the evolution equation in the presence of a 
field is (7'8' 19) 

0ff 1 ~0 (2.3) 
at 2 V2# -}- EO 0-7 

where # = @- q,3 +V26 and we have redefined aE-* E. Equation (2.3) is 
used as the starting point for our simulations and discussion of interracial 
properties. This is the generalization of the Cahn-Hilliard equation for 
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driven diffusive systems. If E is interpreted as an electric field, the addi- 
tional flux term is due to an order-parameter-dependent "conductivity." 

There are several interesting features to note about Eq. (2.3). For 
E =  0 we recover the standard Cahn-Hilliard equation. In one dimension 
and for E--* oo, we obtain the Kuramoto-Sivashinsky equation, which is a 
deterministic model of phase turbulence. (23) Also, the field does not affect 
the linear behavior about the homogeneous q )=0  state. Therefore, we 
expect that the behavior with finite E will be similar to the zero-field case 
for some time after the quench. 

3. D Y N A M I C A L  S C A L I N G  

3.1. M e t h o d s  and M o r p h o l o g y  

To study the dynamics of phase separation in the presence of a field, 
we have performed simulations of the Cahn-Hilliard equation for driven 
diffusive systems [Eq. (2.3)]. The system was prepared in the one-phase 
regime and immediately quenched into the two-phase coexistence regime. 
Domains of the two phases quickly formed, and we studied the growth of 
the domains with time. 

The simulations were performed via an Euler discretization of 
Eq. (2.3) with time step 6t = 0.25 and a mesh size 6x = 1.7. The time step 
and mesh size were chosen as large as possible without affecting the quan- 
tities of interest. This was checked by limited simulations at smaller time 
steps and mesh sizes. (The simulations should be regarded as a lattice 
mapping and corresponds to the cell dynamical systems method of Oono 
and Purl. (21) 

We used two-dimensional square lattices of size N x =  1536 in the x 
(field) direction and Ny= 128 in the y direction. Periodic boundary 
conditions were used in each direction. The initial state was prepared by 
assigning to each site an uncorrelated random number chosen from a 
Gaussian distribution with variance of 0.02. The lattice mapping was 
updated to t =  7000 (28,000 updates) for each initial condition, except for 
the zero-field case, where we only updated to t = 4000. We averaged over 
18 configurations for E =  0.4, four configurations for E =  0.2 and E=0 .1 ,  
and one configuration for E = 0. 

Figure 1 shows a time sequence of the domain structure for E = 0.4 for 
t = 62.5 (250 updates), 500, 4000. At the earliest time (t = 62.5) the observed 
patterns are isotropic ad very similar to the patterns found without a 
field. (~s) This is because the linear instability about the small-amplitude 
initial state does not depend on E. At t = 500 there is a clear anisotropy in 
the domain structure. We see the beginning of connected, roughly tri- 
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Fig. 1. The domain structure for E = 0 . 4  at three different times t=62 .5 ,  t=500 ,  and 
t =4000 (from top to bottom). The local order parameter is displayed on a gray scale with 

= +1 black and ~ = - 1  white. The field points to the right. A 384 x 128 portion of the full 
1536 x 128 lattice is shown. 

angularly shaped objects. The domains grow much faster in the direction 
of the field and become increasingly elongated with time (t = 4000). We 
also see small "bridges" connecting two domains of the same phase. These 
bridges maintain their shape for long periods of time, moving at 
approximately constant velocity with respect to the rest of the pattern. 
Bridges connecting positive domains move in the direction of the field, 
while bridges connecting negative domains move in the opposite direction. 
For  smaller values of the field, similar behavior is found. However, the 
patterns remain approximately isotropic for a longer period of time. This 
suggests that there is a crossover from isotropic to anisotropic patterns 
which might be described by a crossover time z ~ E -p, fl > 0 being the 
crossover exponent. 

Figure 2 shows the domain structures for an off-critical quench with 
average ~ = -0 .4  and E = 0.4. The triangular shape of the domains is more 
apparent since the domains are well separated from each other. The smaller 
domains move with respect to the larger ones. When a smaller domain 
approaches a larger one it is absorbed. This seems to be the dominant 
growth mechanism for off-critical quenches with E # 0. 

3.2, Isotropic Growth 

To get an isotropic measure of the growth, we use the inverse interra- 
cial area density. We identify a "broken bond" by a change in sign of the 
order parameter between nearest neighbor sites (in analogy with studies of 
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Fig. 2. The domain structure for an off-critical quench with average ~9 = -0 .4  and t = 2000. 
The roughly triangular shape of the domains  is apparent. 

the kinetic Ising model). Bonds can be oriented either parallel or per- 
pendicular to the field. We define Bx(t) as the number of "broken bonds" 
in the direction of the field. By(t) is the corresponding number of broken 
bonds in the y direction. The isotropic length scale is 

Rb(t ) -- 2NxNy  (3.1) 
B~(t) + By(t) 

For zero field, Rb(t)  is just a measure of the interracial energy and grows 
as ?/3. We choose this quantity since it has a simple physical meaning 
independent of whether dynamical scaling is observed or not. 

Figure 3 shows Rb(t ) vs. t for four different values of the field. The 
lines are nonlinear least square fits to the data of the form R(t)  = Ro + bt ~ 

1.4 . . . .  

=1.0 

0 . 6  ~ , ~ r ,  i , , 

2 3 4 

loglo t 

Fig. 3. The isotropic inverse interfacial density for E = 0 . 4  (open squares), E = 0 . 2  (filled 
squares), E - 0 . 1  (stars), E =  0 (triangles). The lines through the data  points are fits to R(t)= 
R(O) + bt ~. Here ~ ranges from 0.32 to 0.36 for different E. The statistical uncertainties are 

smaller than the symbol sizes. 
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and a line with slope 1/3 is drawn as a guide to the eye. We find an 
extremely good fit over more than two decades in time. R0 depends on E 
and ranges from -0.6 to 0.4 (which is much less than the maximum R of 
about 25). At late times the lines are almost parallel, indicating that ~ for 
each one is very close to 1/3. The fitting procedure yields ~ between 0.32 
and 0.36 for the various values of E. Therefore the data strongly suggest 
that the growth exponent for the isotropic length scale is 1/3 independent 
of the magnitude of E. Similarly, the off-critical quench yields structures 
that coarsen as t 1/3. 

An asymptotic exponent of 1/3 may not be extremely surprising. What 
is unexpected is that the constant growth exponent of 1/3 shows no sign of 
the crossover from approximately isotropic to very anisotropic domains. 
This is surprising since power-law growth usually means that the dynamics 
is controlled by a single mechanism and that dynamical scaling is observed. 
However, the differences in the domain morphology seem to indicate that 
there is a crossover from one type of growth mechanism, controlled by sur- 
face tension at early times, to another, controlled by the field at late times. 
The fact that a power law growth is observed during this entire range of 
times indicates that there is an intricate coupling between the dynamics in 
the two directions. 

Let us consider some arguments that might give a growth exponent of 
1/3. One might hope to obtain the correct exponent by treating the growth 
in the x (field) and y directions separately. This line of argument suggests 
that, asymptotically, one of the two rates will dominate and determine the 
growth exponent for the isotropic length scale. However, it is difficult to see 
how such an argument can account for the 1/3 growth at early times and 
in the crossover regime. 

The standard argument for a 1/3 exponent for conserved systems is 
based on the work of Lifshitz and Slyozov. (24) This argument, justified for 
off-critical quenches in the absence of a field, is based on competition 
between circular domains mediated by bulk diffusion and driven by surface 
tension. In our case the shape of domains is noncircular. Moreover, this 
shape changes with time. We suspect that the standard arguments for the 
1/3 exponent may be overspecific. Our results indicate that there may be a 
more general argument using only the conservation law and some restric- 
tions on the interactions (such as no hydrodynamic flow) which would be 
applicable whenever the domain sizes are much larger than the interfacial 
width. For example, it has already been shown that the 1/3 growth holds 
for spinodal decomposition, a situation far from that addressed by Lifshitz- 
Slyozov theory. ~25'26) It is conceivable that a similar argument based on 
dimensional analysis of the relevant interface equations will provide an 
"explanation" of the growth law for Rb(t  ). 
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3.3. Anisotropic Scaling 

We discuss the anisotropic dynamical scaling using standard tech- 
niques. Our primary conclusion is that we do not observe satisfactory 
dynamical scaling in the separate directions during the regime that the 
homogeneous length scale Rb(t) grows as t ~/3. 

The anisotropy breaks the symmetry, so that the x and y directions 
may scale differently. As a result, scaling may be manifested in a variety of 
different ways. The most naive form of anisotropic scaling for the real-space 
correlation function is 

C(x, y, t)= c(x/X(t), y/Y(t)) (3.2) 

where X(t) and Y(t) are measures of the characteristic length scales in the 
x and y directions. Dimensional arguments give the corresponding scaling 
form for the anisotropic scattering intensity, 

S(kx, ky, t) = X(t) Y(t) G(kxX(t ), ky Y(t)) (3.3) 

We measure three different sets of characteristic length scales: (1)the 
inverse of the first moments of the scattering intensity K~(t)-1 and Ky(t)-1, 
where 

Kx(t) = ~; ~ & x  kxS(kx, O, t) 
~g dkxS(kx, O, t) 

(3.4) 

and Ky(t) is defined in a similar way. (2)The distances at which the 
correlation function drops to half its value at the origin, Xc(t) and Yc(t), 
where 

c(xc,  o, t)= c(o, o, 0/2 (3 .5 )  

and similarly for Yc(t). (3)The length scales associated with the interracial 
area density, Xb(t) and Yb(t), where 

Xb(t) = NxNy/Bx(t) (3.6) 

and similarly for Yb(t). [Note that the isotropic length scale is given by 
R ~ ( t )  - 1  = (x~(t) -1 + rb(t)-l)/2.] 

Since the larger the field, the faster the crossover to the asymptotic 
behavior, we concentrate on the results for E = 0.4. Figure 4, which com- 
pares the time dependence of the x and y length scales, shows clear 
evidence of a crossover regime without any clean scaling behavior. This 
occurs despite the uniform power-law growth of the isotropic measure 
(shown in Fig. 3). In the direction of the field, x, the "effective" exponent 
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Fig. 4. Comparison of the length scales in the x (solid symbols with solid lines) and y 
direction (open symbols with dashed lines) for E =  0.4. The symbols correspond to the bond 
(squares), correlation (stars), and scattering length scales (triangles). 

increases from ~ ~ 1/3 at early t imes to ~ ~ 0.84).9 and the various length 
scales are not  proport ional .  Similarly, the effective exponent  for the y direc- 
t ion diminishes  from ~ ~ 1/3 to 7 ~  1/4. However ,  since Xb(t ) grows at a 
m u c h  faster rate than Yb(t), we expect that Yb(t)~ Rb(t)~ t 1/3 as t--~ oo. 
This  is a further indicat ion that we are in a crossover  regime. 

Scaling is often analyzed using the real-space correlat ion function,  
which  is s h o w n  in Fig. 5a (for the x direction).  At earlier times t <  125 

(b) 
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Fig. 5. (a) The correlation function C(x, 0, t) along the x axis for E=0.4  and t=  1000 
(stars), 2000 (squares), 4000 (circles), and 6000 (diamonds). (b) The same data normalized by 
C(0, 0, t) and plotted vs. x/Xc(t ). 
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one observes a correlation function much like that for zero field. With 
increasing t, the envelope of oscillations approaches the x axis, reflecting 
patterns with a broad distribution of domain lengths. Figure 5b shows the 
normalized, scaled correlation function. Although the data collapse for 
scaled distances x/Xc(t)< 1/2, dynamical scaling is violated at larger 
distances. Figure 6 shows the scaled form of the scattering intensity for the 
same times. The collapse of the data is poor for t ~< 2000. This is partially 
a reflection of an increasing asymmetry about the peak with time due to 
the anisotropy. The last two data sets show better collapse. This may be a 
sign that we are approaching a scaling regime, or it may simply be a conse- 
quence of the smaller ratio of times. The data do not show good enough 
collapse over a sufficient range of times for us to have any confidence that 
dynamical scaling is being observed. 

Figure 7a shows the scaled scattering intensity in the ky direction. In 
this direction the scattering intensity remains symmetric about the peak. 
Again the collapse of the data is poor. Figure 7b shows the corresponding 
scaled correlation function. The buildup of correlations in the y direction 
is implied by the decrease in oscillations in the x direction (Fig. 5). This is 
because local conservation of the order parameter requires that the integral 
of C(x, y, t) over a region containing many domains must be nearly zero. 

The conditions for dynamical scaling may be more difficult to obtain 
for the anisotropic case. Dynamical scaling is observed when the charac- 
teristic domain size is widely separated from any other length scale. For  
example, for the zero-field case, dynamical scaling will be observed when 
the average domain size R(t) is much larger than the interfacial width. In 
the anisotropic case, such a separation of length scales may be elusive if the 
growth mechanisms in the x and y directions are coupled. This is because 

: ,  
0 . 6  * 
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~0~ ~ 
" Z "  �9 

o n ~- ! 

0 . 0  ' ' ' "~ * 0 " 0 ~ "  ~ 

0 1 2 3 

k,/~(t) 

Fig. 6. The scaled scattering intensity along the k s axis for E = 0.4 and the same times and 
symbols as in Fig. 5. Each point is an average over three k modes. 
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Fig. 7. (a) The scaled form of the scattering intensity along the ky axis. (b) The normalized, 
scaled correlation function along the y direction. E = 0.4 and the times and symbols are the 
same as in Fig. 5. 

some of the y length scale is projected into the x direction and vice versa. 
To illustrate how this may affect the scaling behavior, consider cigar- 
shaped domains with the long axis in the x direction. Assume that X(t) 
grows faster than Y(t) and that the tip of the cigar is a semicircle with 
radius Y(t). In this case, rescaling the domain by X(t) and Y(t) will result 
in an increasingly rectangular object with time. Dynamical scaling will only 
occur when the curvature at the tip can be ignored relative to the rest of 
the domain, i.e., only when X(t)>> Y(t). 

The crossover from isotropic to anisotropic domains depends on the 
magnitude of the field. Figure 8 compares the bond length scales for the 
different field strengths. The behavior of the y length scale is the most 
illuminating. Our results for the growth of the isotropic length scale tells us 
that the y length scale must grow as t w3 both at early times, before the 
anisotropy is important, and at later times, but with a smaller amplitude. 
The figure is consistent with our interpretation. As might be expected, the 
crossover occurs earlier for stronger fields. Even for the largest field, it is 
not clear if we have reached the asymptotic growth regime. 

We can estimate the crossover time by balancing the portion of the 
Cahn-Hilliard equation without explicit field dependence (MV2g) with the 
additional flux term. In the absence of the field, V2# ~ 1/R 3, where R is the 
characteristic size of the domains. The flux term, on the other hand, scales 
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Fig. 8. The x (open) and y (filled) length scales for different electric fields. Open symbols are 
the x lengths E= 0.4 (triangles), 0.2 (stars), 0.1 (squares). The heavy solid line is for E= 0. 

as E/R. The crossover should occur when R ~ E  -1/2. Since R ~ t  l/3, the 
crossover time r behaves as R 3 ~ E -p with the exponent fl = 3/2. Our data 
are consistent with this analysis, but are not sufficient for a complete test. 

4. D O M A I N  M O R P H O L O G Y  

In this section we discuss the domain morphology obtained in the 
simulations. Figures 1 and 2 show a clear directional asymmetry in the 
domains as they become elongated. This asymmetry is a consequence of 
enhanced growth in the direction of the field. However, rather than forming 
ellipses, the domains assume a triangular shape. This is especially apparent 
in the off-critical quench (Fig. 2), where there is no percolation. (It should 
be noted that, in the absence of an external field, these domains would be 
nearly circular. (2~ The unusual triangular shape may be related to the 
intrinsic stability of interfaces with normal vectors oriented parallel and 
antiparallel to the field. (~4) (Here we define the normal vector as pointing 
from the low-density phase, ~ < 0, to the high-density phase.) 

In Fig. 9a we schematically show an isolated domain of high density 
in a background of low-density material. (This could represent, for exam- 
ple, one of the many domains in Fig. 2.) The local fluxes which result in 
mass transfer ultimately control the dynamics. In the absence of an external 
field, these local fluxes are a consequence of "local thermodynamic equi- 
librium" established at the interface (i.e., Gibbs-Thomson boundary condi- 
tions). Gradients in the chemical potential generate mass transfer through 
the bulk, causing the isolated domains to become circular (this process is 
discussed in detail in refs. 20 and 25). The presence of the field introduces 
a new mechanism of transport, which is related to the order-parameter- 
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Fig. 9. (a) Schematic diagram showing the effect of the field on a triangular domain of phase 
0 > 0 (cross-hatched). (b)A stable interface with respect to surface driven currents. (c)An 
unstable interface with respect to surface driven currents. The small arrows indicate the direc- 
tion of ~ current along the interface. The large arrow indicate the motion of the domain. In 
each case the field acts to the right. 

dependent mobility. Since this mobility M ~  ( 1 -  a~b 2) is suppressed in the 
bulk, the increase in mass transfer will be concentrated along the interface. 
If this dominates the dynamics, there will be a tendency for matter to be 
transferred from the vertex of the triangle to the base (see Fig. 9a), causing 
the high-density domain to move with the field (for domains of low density, 
the process is reversed). In addition, the stability of the interface is affected 
by the field. As shown in Fig. 9b, if the normal to the interface is parallel 
to the field, the enhanced surface transport will stabilize the interface. On 
the other hand, if the normal is antiparallel (Fig. 9c), this mechanism will 
amplify small perturbations (analogous to a Raleigh instability). Thus, the 
vertex will become narrow because of the inherent instability of this orien- 
tation for the interface. However, the stable base will remain broad. (Note 
that the conventional Mullin-Sekerka instability, if present, would act to 
destabilize the base. (li)) 

For  finite-size systems, the triangles will eventually elongate into 
stripes with interfaces whose normals are perpendicular to the field 
(assuming the system percolates). In fact, due to the surface driven 
instability, this is the only stable configuration for periodic boundary con- 
ditions. For  other orientations, there will always be at least one unstable 
interface. 
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In order to verify these ideas, we have examined the evolution of an 
initially circular domain in the presence of a field. The domain elongates, 
assuming a roughly triangular shape, and the center of mass moves at a 
(nearly) constant velocity with the field. (In the absence of an external field, 
the circular domain would be stable and stationary.) 

For  the off-critical quench, the field-driven motion of the domains 
causes smaller ones (which move faster) to collide into the larger ones 
(which are nearly stationary), This seems to be the dominant growth 
mechanism. It should be noted that this contrasts sharply with previous 
off-critical simulations for E =  0, where cluster motion is negligible, and 
growth proceeds by "evaporation and condensation" as described by 
Lifshitz and Slyozov. (24) It is very curious that both these simulations give 
a growth exponent of approximately 1/3. 

The critical quench is much more difficult to understand because of 
the complicated percolation topology, Here the domains are no longer 
isolated and interdomain interactions play an important  role. We have 
noticed that, when in close proximity, the vertex of one domain can 
influence the base of its neighbor. Figure 10a shows the resulting configura- 
tion. A bridge is formed which moves at nearly constant velocity while 
maintaining its shape for long periods of time. Figure 10b shows a cross 
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Fig. 10. (a) Eniarged view of the domain structure for E=0.4, showing the bridges 
separating the vertex of one (dark) domain from the base of its neighbor (there are three 
such bridges in this figure). (b)Profile of the order parameter across the central bridge. 
(c) Evolution of a one-dimensional solitary wave for E = 0.4 and time difference 6t = 2500 
(the dashed line represents the later time). 
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section of the bridge in the x direction. This bridge moves toward the ver- 
tex, causing that domain to shrink while the other grows correspondingly. 

To understand these long-lived structures, we have considered the 
dynamics in one dimension. Beginning with the single-phase homogeneous 
state, we introduced small domains of the opposite phase. By numerically 
tracking the evolution, we observed the formation of "solitary waves" 
which move at a constant velocity and maintain their shape indefinitely as 
shown in Fig. 10c. The velocity depends on the width of the solitary wave, 
with wider ones moving more slowly. When the initial domain size 
approaches the interfacial width, the profile of these one-dimensional struc- 
tures is similar to the profile of the two-dimensional bridge (see Fig. 10b). 
Therefore, we believe the two-dimensional bridges are a reflection of the 
one-dimensional dynamics. 

5. S U M M A R Y  

We have studied the behavior of a driven diffusive system (DDS) after 
a rapid quench. The field breaks the directional symmetry, causing a cross- 
over from an initially isotropic to a strongly anisotropic morphology. 
Although the growths along and perpendicular to the field differ, we find 
that the inverse interracial density, which is an isotropic measure, grows as 
?/3 independent of the field strength. This exponent is obtained throughout 
the crossover regime, even though dynamical scaling in the separate direc- 
tions is not observed. Therefore, we expect that ?/3 growth may be a more 
general consequence of the local conservation law than previously believed. 

We have analyzed the dynamics in terms of a surface driven instability 
caused by the field. This instability generates roughly triangular domains. 
For off-critical quenches these domains coarsen through coalescence also 
with a growth exponent of 1/3. For critical quenches, domains, in part, 
interact through structures similar to one-dimensional solitary waves. 
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